S/SX Tubes series

Extremely robust and sturdy covered steel cable carriers

Chain widths

STEEL

FAINLESS

:subaki-kabelschlepp.com/

3 2 5 4 S series SX series

S/SX Tubes series

Side bands made of galvanized steel

Side bands made of steel resistant to rust and acid

Overview

Extremely robust side

1

- bands, galvanized or stainless steel 8 Steel band cover available in 1 mm width
 - sections 9 Replaceable glide shoes

1 Aluminum covers available in 1 mm width sections

6

7

8

- 2 4 bolted aluminum covers for extreme loads
- 3 Joint design with hardened bolts for long service life
- Cranked link plate desian

9

10

- 5 Can be opened on the inside and the outside for cable laying
- 6 Different separation options for the cables

10 End connectors for different connection variants

Features

- Extremely robust, sturdy steel cable carriers for heavy mechanical loads and rough environmental conditions
- Side bands made of galvanized steel (S series) or corrosion-resistant and acid-resistant steel (SX series) in three qualities: ER 1 / ER 1S and ER 2
- Very sturdy link plates, each consisting of two individual plates
- Very extensive unsupported lengths even with large additional loads
- Joint design with multi stroke system and hardened bolt
- Bolted stay systems, solid end connectors
- Explosion protection with classification EX II 2 GD as per ATEX RL

Glide shoes available for gliding applications

The design

Proven steel cable carriers with extremely sturdy link plates and dedicated joint design with multi stroke system and hardened bolt. The extremely sturdy design allows extensive unsupported lengths and high possible additional loads.

Sandwich design: Link plates consist of two plates

Stroke system with hardened bolt and circlips

Also available as open variants with different stay variants, p. 606

Type

S/SX0650 Tubes

S/SX0950 Tubes

Stay variant

RMD

RMD

Opening variant

Key for abbreviations on page 16

Design guidelines 62

Technical support:

from page 6									•	
rom ro	S/SX1250 Tube	es				:				:
<u> </u>		Ė	RMD	69	94	101 – 751	150 – 800	1	125	200 –
p.de	S/SX1800 Tube	es								
rechnik@kabelschlepp.de		ф.	RMD	104	140	188 – 938	250 – 1000	1	180	320 –
	(641)									
ik@										
techi	* More information (** Depending on the *** Application-spec	e specific	applica	ation, ad			ents or rolle	rs are re	quired.	•
۵)										
NINO-ONGINOOK.dO										
JING-O	回数数回	Techn	ical m	anual						

Do you need additional information on the S/SX series? Our technical manual at tsubaki-kabelschlepp.com/download contains all information for selecting your cable carrier.

Addi-

tional

load

≤ [kg/m]

30

45

50

60

Cable-

 d_{max}

[mm]

24

35

55

83

Bi-

grid

[mm]

 $\overset{\text{X mm}}{\longleftrightarrow}$

t

[mm]

65

95

KR

[mm]

115 - 400

170 - 600

1000

1300

 $B_{\boldsymbol{k}}$

[mm]

100 - 500

125 - 600

 B_i

[mm]

 \longleftrightarrow

65 - 465

88 - 563

hG

[mm]

50

68

[mm]

30

44

S/SX Tubes series

Overview

S/SX Tubes series

Unsuppo	rted arrar	ngement	Gliding	g arrange	ment		Inner dis	tribution			ation va		ge
$\begin{array}{c} \textbf{Travel} \\ \textbf{length} \\ \leq [m] \end{array}$	v _{max} ≤ [m/s]	a max ≤ [m/s²]	$\begin{array}{c} \textbf{Travel} \\ \textbf{length} \\ \leq [m] \end{array}$	v _{max} ≤ [m/s]	a max ≤ [m/s²]	TS0	TS1	TS2	TS3	vertical hanging or standing	lying on the side	rotating arrangement	Page
										vertica	Έ	arra	
:		:			:			:		:	:		
5,8	2,5	5	***	1	2	•	•	-	-	•	•	-	698
								:		:	:		
8,8	2,5	5	***	1	2	•	•	-	-	•	•	-	704
13,5	2,5	5	***	1	2	•	•	•	-	•	•	-	710
17.0	0	0	***	0.0	0								71.4
17,8	2	3		0,8	2	•	•	-	•	•	•	-	714
:	:	:		:	:		:	:		:	: :	:	

tsubaki-kabelschlepp.com/

Key for abbreviations on page 16

Design guidelines from page 62

technik@kabelschlepp.de Technical support:

online-engineer.de

S/SX0650

Pitch 65 mm

Inner height 30 mm

Chain widths 100 - 500 mm

Bending radii 115 - 300 mm

Stay variants

Aluminum stay RMD page 698

Aluminum cover system

- Bolted aluminum covers for maximum stability.
- For applications generating chips or coarse contamination.
- Inside/outside: Threaded joint easy to release.

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax

TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

Unsupported arrangement

KR	Н	L_{B}	U_B
[mm]	[mm]	[mm]	[mm]
115	305	621	270
125	325	653	280
135	345	684	290
145	365	716	300
155	385	747	310
175	425	810	330
200	475	888	355
250	575	1045	405
300	675	1202	455
400	875	1516	555

Inner heights

Chain widths

tsubaki-kabelschlepp.com/

Installation height Hz

 $H_z = H + 10 \text{ mm/m}$

Load diagram for unsupported length depending on the additional load.

Intrinsic cable carrier weight $q_k = 4.5$ kg/m. For other inner widths, the maximum additional load changes.

For cable carriers with a aluminum cover system, a higher intrinsic cable carrier weight is to note.

Speed up to 2.5 m/s

Travel length

up to 5.8 m

Acceleration up to 5 m/s2

Additional load up to 30 kg/m

Gliding arrangement

Speed up to 1 m/s

Travel length

on request

Acceleration up to 2 m/s²

Additional load up to 30 kg/m

The gliding cable carrier must be guided in a channel. See p. 732.

Glide shoes have to be used for gliding applications.

Aluminum stay RMD – aluminum cover system

- Bolted aluminum covers for maximum stability.
- For applications generating chips or coarse contamination.
- Available customized in 1 mm grid.
- Inside/outside: Threaded joint easy to release.

Stay arrangement on each chain link (VS: fully-stayed)

Design guidelines from page 62

Technical support: technik@kabelschlepp.de

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

 $\begin{array}{c} \text{Cable carrier length } L_k \\ \text{rounded to pitch } t \end{array}$

h _i [mm]	h G [mm]	h _{Gʻ} [mm]	B _i [mm]	B _{St} [mm]*	B _k [mm]	B _{EF} [mm]			KR [mm]			q k [kg/m]
20	50	56	65	85 —	D. 15	B _{St} + 20	115	125	135	145	155	4.84
30	50	- 50	465	4 8 5	DSt + 13	DSt + 20	175	200	250	300	400	10.50

^{*} in 1 mm width sections

Order example

	•												
7	SX0650	٦.٢	180	٦.[RMD	٦.٢	135	٦.٢	St	٦-٢	1430	7	VS
5	Туре		B _{St} [mm]		Stay variant		KR [mm]		Material		L _k [mm]		Stay arrangement

S/SX0650 RMD | Inner distribution | TS0 · TS1

Divider systems

As a standard, the divider system is mounted on every 2nd cover/chain link (HS).

As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (version A).

Inner heights

Divider system TS0 without height separation

Vers.	a _{T min} [mm]			n _{T min}
Α	11.5	13	10	-

The dividers can be moved in the cross section.

Chain widths

Divider system TS1 with continuous height separation

,	Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
	Α	11.5	13	10	2

The dividers can be moved in the cross section.

tsubaki-kabelschlepp.com/

Order example

Please state the designation of the divider system (TS0, TS1 ...), version and number of dividers per cross section [n_T].

If using divider systems with height separation (TS1) please also state the positions [e.g. VD1] viewed from the left driver belt. You are welcome to add a sketch to your order.

The end dividers are part of the divider system and don't have to be ordered separately.

S/SX0650 | End connectors | Steel connectors

End connectors - steel

End connectors made of steel. The connection variants on the fixed point and on the driver can be combined and changed later on, if necessary.

▲ Assembly options

Caution: The standard connection variant FAI/MAI is only possible from

Connection point

F – fixed point M – driver

Connection type

A – threaded joint to outside (standard)

threaded joint to inside

H - threaded joint, rotated 90° to the outside

K – threaded joint, rotated 90° to the inside

Connection surface

connection surface inside (standard)

A – connection surface outside

Order example

B_k of 70 mm.

Chain widths

tsubaki-kabelschlepp.com/ s-sx-tubes

Key for abbreviations on page 16

Design guidelines

from page 62

technik@kabelschlepp.de Technical support:

online-engineer.de

S/SX0950

Pitch 95 mm

Inner height 44 mm

Chain widths 125 - 600 mm

Bending radii 170 - 600 mm

Stay variants

Aluminum stay RMD page 704

Aluminum cover system

- Bolted aluminum covers for maximum stability.
- For applications generating chips or coarse contamination.
- Inside/outside: Threaded joint easy to release.

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax

TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

S/SX0950 | Installation dim. | Unsupported · Gliding

Unsupported arrangement

KR [mm]	H [mm]	L _B	U _B [mm]
170	442	914	395
200	502	1008	425
260	622	1197	485
290	682	1291	515
320	742	1385	545
350	802	1480	575
410	922	1668	635
600	1302	2264	825

Inner height

Chain widths

tsubaki-kabelschlepp.com/

Installation height Hz

 $H_z = H + 10 \text{ mm/m}$

Load diagram for unsupported length depending on the additional load.

Intrinsic cable carrier weight $q_k = 7.6$ kg/m. For other inner widths, the maximum additional load changes.

For cable carriers with a aluminum cover system, a higher intrinsic cable carrier weight is to note.

Travel length up to 8.8 m

up to 45 kg/m

Gliding arrangement

Speed

up to 2.5 m/s

Speed up to 1 m/s

The gliding cable carrier must be guided in a channel. See p. 732.

Travel length on request

Glide shoes have to be used for gliding applications.

S/SX0950 RMD | Dimensions · Technical data

Aluminum stay RMD – aluminum cover system

- Bolted aluminum covers for maximum stability.
- For applications generating chips or coarse contamination.
- Available customized in 1 mm grid.
- Inside/outside: Threaded joint easy to release.

Stay arrangement on each chain link (VS: fully-stayed)

Design guidelines from page 62

The maximum cable diameter strongly depends on the bending radius and the desired cable type.

Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_{k} \approx \frac{L_{S}}{2} + L_{B}$$

Cable carrier length L_k rounded to pitch t for odd number of chain links

n _i [mm]	ng [mm]	ng _ʻ [mm]	B _i [mm]	[mm]*	[mm]	[mm] REL		m [m	K m]		q k [kg/m]
11	68	73	88	1 <u>0</u> 6	Ro. ⊥ 10	B _{St} + 28	170	200	260	290	9.97
	00	73	563	581	DSt + 19	DSt + 20	320	350	410	600	21.95

^{*} in 1 mm width sections

Order example

SX0950	١.
Type	

online-engineer.de

Divider systems

As a standard, the divider system is mounted on every 2nd cover/chain link (HS).

As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (version A).

Inner height

Divider system TS0 without height separation

The dividers can be moved in the cross section.

Chain widths

Divider system TS1 with continuous height separation

The dividers can be moved in the cross section.

tsubaki-kabelschlepp.com/

Order example

Please state the designation of the divider system (TS0, TS1 ...), version and number of dividers per cross section [n_T].

If using divider systems with height separation (TS1) please also state the positions [e.g. VD1] viewed from the left driver belt. You are welcome to add a sketch to your order.

The end dividers are part of the divider system and don't have to be ordered separately.

on page 16

S/SX0950 | End connectors | Steel connectors

End connectors - steel

End connectors made of steel. The connection variants on the fixed point and on the driver can be combined and changed later on, if necessary.

Assembly options

Connection point

F – fixed point M – driver

Connection type

- A threaded joint to outside (standard)
- I threaded joint to inside
- H threaded joint, rotated 90° to the outside
- K threaded joint, rotated 90° to the inside

Connection surface

- connection surface inside (standard)
- A connection surface outside

Caution: The standard connection variant FAI/MAI is only possible from B_k of 122 mm.

Order example

tsubaki-kabelschlepp.com/ s-sx-tubes

on page 16

Key for abbreviations

Design guidelines

from page 62

S/SX125

Pitch 125 mm

Inner height 69 mm

Chain widths 150 - 800 mm

Bending radii 200 - 1000 mm

Stay variants

Aluminum stay RMD page 710

Aluminum cover system

- Bolted aluminum covers for maximum stability.
- For applications generating chips or coarse contamination.
- Inside/outside: Threaded joint easy to release.

technik@kabelschlepp.de Technical support:

online-engineer.de

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax

TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

S/SX1250 | Installation dim. | Unsupported · Gliding

Unsupported arrangement

KR [mm]	H [mm]	L _B [mm]	U _B [mm]
200	541	1128	497
220	581	1191	517
260	661	1317	557
300	741	1442	597
340	821	1568	637
380	901	1694	677
420	981	1820	717
460	1061	1945	757
500	1141	2071	797
540	1221	2196	837
600	1341	2385	897
1000	2141	3640	1297

Inner heights

Chain widths

:subaki-kabelschlepp.com/

Installation height Hz

 $H_z = H + 10 \text{ mm/m}$

Load diagram for unsupported length depending on the additional load.

Intrinsic cable carrier weight $q_k = 13$ kg/m. For other inner widths, the maximum additional load changes.

For cable carriers with a aluminum cover system, a higher intrinsic cable carrier weight is to note.

Speed up to 2.5 m/s

Acceleration up to 5 m/s²

Additional load up to 50 kg/m

Gliding arrangement

The gliding cable carrier must be guided in a channel. See p. 732.

Glide shoes have to be used for gliding applications.

Speed up to 1 m/s

n ! Travel length on request

Additional load up to 50 kg/m

S/SX1250 RMD | Dimensions · Technical data

Aluminum stay RMD – aluminum cover system

- Bolted aluminum covers for maximum stability.
- For applications generating chips or coarse contamination.
- Available customized in 1 mm grid.
- Inside/outside: Threaded joint easy to release.

Stay arrangement on each chain link (VS: fully-stayed)

Design guidelines from page 62

The maximum cable diameter strongly depends on the bending radius and the desired cable type.

Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length L_k rounded to pitch t

nį	ng	ngʻ	Вį	BSt	Вk	REE			K	ιK			q _k	
[mm]	[mm]	[mm]	[mm]	[mm]*	[mm]	[mm]			[m	ım]			[kg/m]	
60	0.4	104	1 <u>0</u> 1	126	B _{St} + 24	P 20	200	220	260	300	340	380	15.48	
บฮ	34	104	751	77 6	DSt + 24	DSt + 30	420	460	500	540	600	1000	32.38	

^{*} in 1 mm width sections

Order example

S1250].[352].	RMD].	260].	St]-	4750
Туре		B _{St} [mm]		Stay variant		KR [mm]		Material		L _k [mn

online-engineer.de

S/SX1250 RMD | Inner distribution | TS0 · TS1 · TS2

Divider systems

As a standard, the divider system is mounted on every 2nd cover/chain link (HS).

As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (version A).

Divider system TS0 without height separation

Vers.	a _{T min} [mm]		$\begin{array}{c} a_{\text{c min}} \\ [\text{mm}] \end{array}$	n _{T min}
Α	17.5	20	15	-

The dividers can be moved in the cross section.

Divider system TS1 with continuous height separation

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	10	12	8	2

The dividers can be moved in the cross section.

Divider system TS2 with partial height separation

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _T min
Α	11*/17**	14*/21	8*/15	2
* Ear V/DA	** For y	orcion with	hoiaht conar	ation

to the end divider

With grid distribution (1 mm grid). The dividers are attached by the height separation, the grid can be moved in the cross section.

Sliding dividers are optionally available (thickness of divider = 4 mm).

Order example

Inner heights

Chain widths

Increments

tsubaki-kabelschlepp.com/

End connectors - steel

End connectors made of steel. The connection variants on the fixed point and on the driver can be combined and changed later on, if necessary.

Key for abbreviations on page 16

Design guidelines from page 62

technik@kabelschlepp.de Technical support:

Assembly options

Caution: The standard connection variant FAI/MAI is only possible from

Connection point

F – fixed point

M – driver

Connection type

A – threaded joint to outside (standard)

94 Driver

- I threaded joint to inside
- H threaded joint, rotated 90° to the outside
- K threaded joint, rotated 90° to the inside

Connection surface

- connection surface inside (standard)
- A connection surface outside

Order example

B_k of 125 mm.

Chain widths

tsubaki-kabelschlepp.com/ s-sx-tubes

Key for abbreviations on page 16

Design guidelines from page 62

technik@kabelschlepp.de Technical support:

online-engineer.de

Chain widths 250 - 1000 mm

Bending radii 320 - 1300 mm

Stay variants

Aluminum stay RMD page 716

Aluminum cover system

- Bolted aluminum covers for maximum stability.
- For applications generating chips or coarse contamination.
- Inside/outside: Threaded joint easy to release.

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax

TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

Unsupported arrangement

KR	Н	L_B	U_B
[mm]	[mm]	[mm]	[mm]
320	850	1725	750
375	960	1898	805
435	1080	2087	865
490	1190	2259	920
605	1420	2620	1035
720	1650	2982	1150
890	1990	3516	1320
1175	2560	4411	1605
1300	2810	4804	1730

图11图151

Einbauhöhe Hz

 $H_7 = H + 10 \text{ mm/m}$

Load diagram for unsupported length depending on the additional load.

Intrinsic cable carrier weight $q_k = 26$ kg/m. For other inner widths, the maximum additional load changes.

For cable carriers with a aluminum cover system, a higher intrinsic cable carrier weight is to note.

Speed up to 2 m/s

Travel length

up to 17.8 m

Acceleration up to 3 m/s²

S/SX1800 | Installation dim. | Unsupported · Gliding

60.0 50.0

40.0

30.0

20.0

q, in kg/m

10.0

additional

Additional load up to 60 kg/m

Gliding arrangement

The gliding cable carrier must be guided in a channel. See p. 732.

Glide shoes have to be used for gliding applications.

Speed up to 0.8 m/s

Acceleration up to 2 m/s²

Travel length on request

Additional load up to 60 kg/m

S/SX1800 RMD | Dimensions · Technical data

Aluminum stay RMD – aluminum cover system

- Bolted aluminum covers for maximum stability.
- For applications generating chips or coarse contamination.
- Available customized in 1 mm grid.
- Inside/outside: Threaded joint easy to release.

Stay arrangement on each chain link (VS: fully-stayed)

Design guidelines from page 62

The maximum cable diameter strongly depends on the bending radius and the desired cable type.

Please contact us.

Calculating the cable carrier length

Cable carrier length L_k

$$L_k \approx \frac{L_S}{2} + L_B$$

 $\begin{array}{c} \text{Cable carrier length } L_k \\ \text{rounded to pitch } t \end{array}$

[r	h i nm]	h _G [mm]	h _{Gʻ} [mm]	B _i [mm]	B _{St} [mm]*	B _k [mm]	B _{EF} [mm]			KR [mm]			q_k [kg/m]
1	104	140	155	1 <u>8</u> 8	221	B _{St} + 29	B _{St} + 40	320	375	435	490	605	28.46
				938	971		O.	720	890	1175	1300		47.67

^{*} in 1 mm width sections

Order example

S1800	
Type	

online-engineer.de

Inner

heights

Chain widths 250 1000

Incre-

ments 1 mm

tsubaki-kabelschlepp.com/

Divider systems

As a standard, the divider system is mounted on every 2nd cover/chain link (HS).

As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (version A).

Divider system TS0 without height separation

Vers.	a _{T min} [mm]	a _{x min} [mm]		n _{T min}
Α	21.5	25	17.5	-

The dividers can be moved in the cross section.

Divider system TS1 with continuous height separation

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	21.5	25	17.5	2

The dividers can be moved in the cross section.

Divider system TS3 with height separation consisting of plastic partitions

Vers.	a _{T min}	a_{xmin}		
	[mm]		[mm]	
Α	38*/16.5**/12***	16/42*	8	2

- * For aluminum partitions
- ** For VRO
- *** For version with height separation to the end divider

The dividers are fixed with the partitions. The entire divider system can be moved in the cross section.

Aluminum partitions in 1 mm increments with $a_x > 42 \text{ mm}$ are also available.

	a_x (center distance of dividers) [mm]										
	a _c (nominal width of inner chamber) [mm]										
16	18	23	28	32	33	38	43	48	58	64	68
8	10	15	20	24	25	30	35	40	50	56	60
78	80	88	96	112	128	144	160	176	192	208	
70	72	80	88	104	120	136	152	168	184	200	

When using plastic partitions with $a_x > 112$ mm, we recommend an additional center support with a twin divider (S_T = 5 mm). Twin dividers are also suitable for retrofitting in the partition system.

S/SX1800 | End connectors | Steel connectors

End connectors - steel

End connectors made of steel. The connection variants on the fixed point and on the driver can be combined and changed later on, if necessary.

▲ Assembly options

Connection point

F – fixed point M – driver

A - thread

- A threaded joint to outside (standard)
- threaded joint to inside
- H threaded joint, rotated 90° to the outside
- K threaded joint, rotated 90° to the inside

Connection surface

Connection type

- connection surface inside (standard)
- A connection surface outside

Caution: The standard connection variant FAI/MAI is only possible from B_k of 139 mm.

Order example

Chain widths

Incre-ments

tsubaki-kabelschlepp.com/ s-sx-tubes

