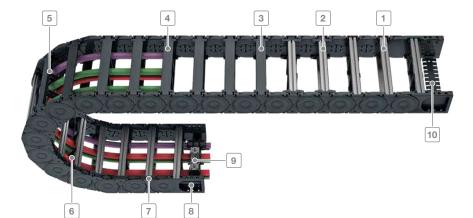

MASTER series


Inner heights

80

Inner widths

> 50 800

MASTER series Overview

- 1 Aluminum stays available in 1 mm width sections
- 2 Aluminum stays in 1 mm width sections with plastic adapter
- 3 Plastic stays with integrated divider fixing
- 4 Can be opened auickly on the inside and the outside for cable laying
- 5 Fixable dividers
- 6 Many possibilities for internal subdivision
- 7 Replaceable glide shoes
- 8 Closed and open universal mounting brackets (UMBs)
- 9 C-rail for strain relief elements
- 10 Integratable strain relief comb

Features

- Low intrinsic weight
- Favorable ratio of inner to outer dimensions
- Versions with aluminum stays available in 1 mm width sections up to 800 mm inner width
- Long service life due to minimized hinge wear owing to the "life extending 2 disc principle"
- Extremely quiet through internal damping system

Variable pre-tensioning for the most varied applications is possible

Minimized hinge wear owing to the "life extending 2 disc principle"

C-rail integrated in the connector

Fixable dividers for applications laying on the side and high lateral accelerations

Many separation options for the cables

MASTER series | Overview

Key for abbreviations on page 16

Design guidelines from page 62

Technical support: technik@kabelschlepp.de

online-engineer.de

Туре	Opening variant	Stay variant	h _i [mm]	h _G [mm]	B _i [mm]	B _k [mm]	B _i - grid [mm]	t [mm]	KR [mm]	Addi- tional load ≤ [kg/m]	Cable- d _{max} [mm]	
H33	Ļ	RSH	33	51	50 – 400	B _i + 22	1	56	60 – 300	11	26	
H46	i	RSH	46	64	50 – 400	B _i + 26	1	67	75 – 350	20	36	
L60	i i	RSH RE	60 60	88 88		B _i + 28 B _i + 28	1 -		135 – 500 135 – 500		48 48	
L80		RSH RE	80 80	110 110	100 – 800 85 – 250	B _i + 32 B _i + 32	<u>:</u> :		150 – 500 150 – 500		64 64	

MASTER series | Overview

Unsuppo	rted arraı	ngement	Glidin	g arrange	ment		Inner dis	tribution			ation va		Page
	v _{max} ≤ [m/s]	a max ≤ [m/s²]		v _{max} ≤ [m/s]	a max ≤ [m/s²]	TS0	TS1	TS2	TS3	vertical hanging or standing	lying on the side	rotating arrangement	Pa
			←					H		vertica	lyi	arra	
3.5	10	50	60	2	2-3	•	•	-	•	•	•	-	280
6.4	8	40	80	2	2-3	•	•	-	•	•	•	-	286
7	6	30	-	_	_	•	•	-	•	•	•	-	292
7	6	30	-	-	-	•	•	-	•	•	•	-	296
7.9	5	25	-	_	-	•	•	-	•	•	•	-	302
7.9	5	25	-	-	-	•	•	-	•	•	•	-	306

H33 | Stay variants | Overview

Pitch 56 mm

Inner height 33 mm

Inner widths 50 - 400 mm

Bending radii 60 - 300 mm

Stay variants

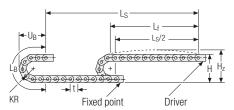
Aluminum stay RSH page 280

Frame screw-in stay

- Aluminum profile bars for light to medium loads. Assembly without screws.
- Outside/inside: release by rotating 90°.

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax



TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

H33 | Installation dim. | Unsupported

Unsupported arrangement

	KR [mm]	H [mm]	H _z [mm]	L _B [mm]	U _B [mm]
	60	171	211	301	142
	75	201	241	348	157
•	100	251	291	427	182
	125	301	341	505	207
•	150	351	391	584	232
	175	401	441	662	257
	200	451	491	741	282
	220	491	531	804	302
	250	551	591	898	332
	300	651	691	1055	382

Inner heights

33

Inner widths

:subaki-kabelschlepp.com/

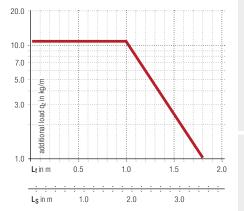
Load diagram for unsupported length depending on the additional load.

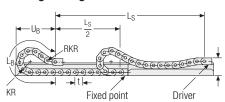
Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.

Intrinsic cable carrier weight $q_k = 2.08 \text{ kg/m}$. For other inner widths, the maximum additional load changes.

Speed up to 10 m/s

Travel length


up to 3.5 m


Acceleration up to 50 m/s²

Additional load up to 11 kg/m

Gliding arrangement

The gliding cable carrier must be guided in a channel. See p. 732.

We recommend the use of glide shoes for gliding applications.

Speed up to 2 m/s

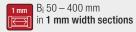
Travel length up to 60 m

Additional load up to 11 kg/m

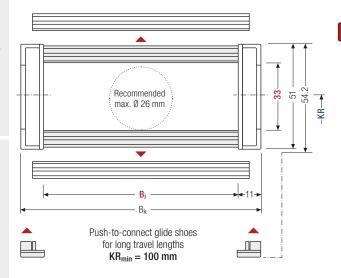
on page 16

HC33 RSH ∣ Dimensions · Technical data

Aluminum stay RSH screw-in frame stay


Aluminum profile bars for light and medium loads. Assembly without screws.

- Available customized in 1 mm grid.
- Outside/inside: release by rotating.



Stays mounted on each chain link (VS: fully-stayed)

Design guidelines from page 62

technik@kabelschlepp.de Technical support:

The maximum cable diameter strongly depends on the bending radius and the desired cable type.

Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length Lk rounded to pitch t

h _i	h _G	h _{Gʻ}	B _i	B _k	KR	q_k
[mm]	[mm]	[mm]	[mm]*	[mm]	[mm]	[kg/m]
					60 75 100 125 150 175 200 220 250 300	

in 1 mm width sections

Order example

HC 33].[330].[RSH].[150	- [1960	VS
Type		B _i [mm]		Stay variant		KR [mm]		L _k [mm]	Stay arrangement

online-engineer.de

Divider systems

The divider system is mounted on every 2nd chain link as a standard.

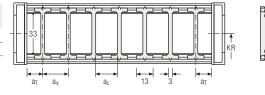
As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (version A).

For applications with lateral acceleration and lying on the side, the dividers can be attached by simple insertion of a fixing profile into the RSH stay, available as an accessory (version B).

Inner heights

Inner widths

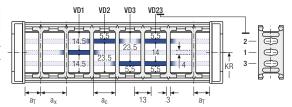
Increments



:subaki-kabelschlepp.com/

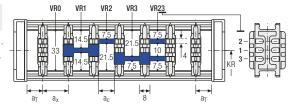
Divider system TS0 without height separation

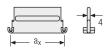
Vers.				a _{x grid} [mm]	n _T min
Α	7	13	10	-	-
В	7	13	10	2	_


The dividers can be moved within the cross section (version A) or fixed (version B).

Divider system TS1 with continuous height separation

Vers.				a _{x grid} [mm]	n _T min
Α	7	13	10	-	2
В	7	13	10	2	2


The dividers can be moved within the cross section (version A) or fixed (version B).

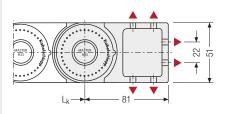


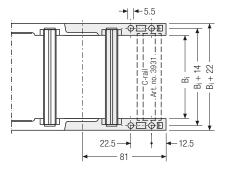
Divider system TS3 with height separation consisting of plastic partitions

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	4	16	8	2

The dividers are fixed by the height separation, the complete divider system is movable in the cross section.

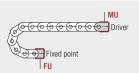
Aluminum partitions in 1 mm increments with $a_x > 42$ mm are also available.


	a _x (center distance of dividers) [mm]										
a_c (nominal width of inner chamber) [mm]											
16 18 23 28 32 33 38 43 48 58 64 68											
8	10	15	20	24	25	30	35	40	50	56	60
78	80	88	96	112	128	144	160	176	192	208	
70	72	80	88	104	120	136	152	168	184	200	


When using **plastic partitions with a_x > 112 \text{ mm}**, we recommend an additional center support with a **twin divider** ($S_T = 3 \text{ mm}$). Twin dividers are also suitable for retrofitting in the partition system.

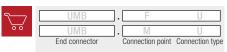
on page 16

Universal end connectors UMB – plastic (standard)


The universal mounting brackets (UMB) are made from plastic and can be mounted from the top, from the bottom or face on.

▲ Assembly options

Design guidelines from page 62


Connection point

F - fixed point M - driver

Connection type

U – universal mounting bracket

Order example

We recommend the use of strain reliefs before driver and fixed point. See from p. 794.

technik@kabelschlepp.de Technical support:

online-engineer.de

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support

Configure your cable carrier here: onlineengineer.de

Inner widths

Incre-ments

tsubaki-kabelschlepp.com/

Design guidelines

Inner height 46 mm

Inner widths 50 - 400 mm

Bending radii 75 - 350 mm

Stay variants

Pitch

Aluminum stay RSH page 286

Frame screw-in stay

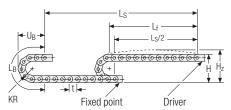
- Aluminum profile bars for light to medium loads. Assembly without screws.
- Outside/inside: release by rotating 90°.

technik@kabelschlepp.de Technical support:

online-engineer.de

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax



TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

H46 | Installation dim. | Unsupported

Unsupported arrangement

KR [mm]	H [mm]	H _z [mm]	L _B [mm]	U _B [mm]
75	214	262	370	174
100	264	312	448	199
125	314	362	527	224
150	364	412	605	249
175	414	462	684	274
200	464	512	762	299
220	504	552	825	319
250	564	612	919	349
300	664	712	1076	399
350	764	812	1234	449

Inner heights

Inner widths

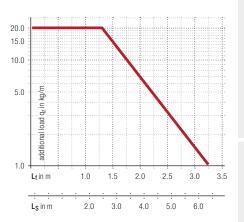
tsubaki-kabelschlepp.com/

Load diagram for unsupported length depending on the additional load.

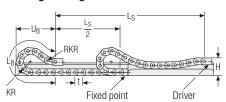
Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.

Intrinsic cable carrier weight $q_k = 2.4$ kg/m. For other inner widths, the maximum additional load changes.

Speed up to 8 m/s



Acceleration up to 40 m/s²



Additional load up to 20 kg/m

Gliding arrangement

The gliding cable carrier must be guided in a channel. See p. 732.

We recommend the use of glide shoes for gliding applications.

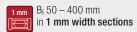
Speed up to 2 m/s

Travel length up to 80 m

Additional load up to 20 kg/m

on page 16

HC46 RSH □ Dimensions · Technical data


Aluminum stay RSH screw-in frame stay

- Aluminum profile bars for light and medium loads. Assembly without screws.
- Available customized in 1 mm grid.
- Outside/inside: release by rotating.

Stays mounted on each chain link (VS: fully-stayed)

Design guidelines from page 62

64 Recommended max. Ø 36 mm Push-to-connect glide shoes for long travel lengths $KR_{min} = 100 \text{ mm}$

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

> Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length Lk rounded to pitch t

technik@kabelschlepp.de Technical support:

h _i	h _G	h _{Gʻ}	B _i	B _k	KR	q_k
[mm]	[mm]	[mm]	[mm]*	[mm]	[mm]	[kg/m]
•	64 n width se		50 – 400	B _i + 26	75 100 125 150 175 200 220 250 300 350	1,83 – 4,01

online-engineer.de

Divider systems

The divider system is mounted on every 2nd chain link as a standard

As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (version A).

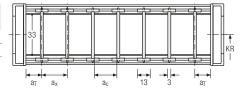
For applications with lateral acceleration and lying on the side, the dividers can be attached by simple insertion of a fixing profile into the RSH stay, available as an accessory (version B).

Inner heights

Inner widths

50 400 **←**

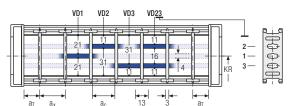
Increments



:subaki-kabelschlepp.com/

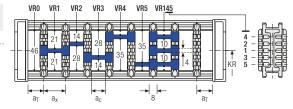
Divider system TS0 without height separation

Vers.				a _{x grid} [mm]	
Α	7	13	10	-	-
В	7	13	10	2	-


The dividers can be moved within the cross section (version A) or fixed (version B).

Divider system TS1 with continuous height separation

Vers.			a _{c min} [mm]	a _{x grid} [mm]	n _T min
Α	7	13	10	-	2
В	7	13	10	2	2

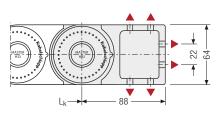

The dividers can be moved within the cross section (version A) or fixed (version B).

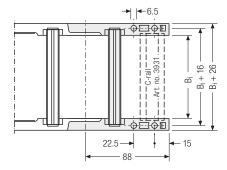
Divider system TS3 with height separation consisting of plastic partitions

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	4	16	8	2

The dividers are fixed by the partitions, the complete divider system is movable in the cross section.

Aluminum partitions in 1 mm increments with $a_x > 42$ mm are also available.

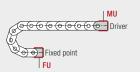

			a _x (center (distanc	e of div	iaers) (r	nmj			
			a _c (no	ominal v	vidth of i	inner ch	amber)	[mm]			
16	18	23	28	32	33	38	43	48	58	64	68
8	10	15	20	24	25	30	35	40	50	56	60
78	80	88	96	112	128	144	160	176	192	208	
70	72	80	88	104	120	136	152	168	184	200	


When using plastic partitions with $a_x > 112$ mm, we recommend an additional center support with a **twin divider** ($S_T = 3$ mm). Twin dividers are also suitable for retrofitting in the partition system.

on page 16

Universal end connectors UMB – plastic (standard)

The universal mounting brackets (UMB) are made from plastic and can be mounted from the top, from the bottom or face on.



▲ Assembly options

Design guidelines from page 62

technik@kabelschlepp.de

Technical support:

Connection point


F - fixed point M - driver

Connection type

U – universal mounting bracket

Order example

We recommend the use of strain reliefs before driver and fixed point. See from p. 794.

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support

Configure your cable carrier here: onlineengineer.de

online-engineer.de

Inner widths

50 400

Incre-ments

tsubaki-kabelschlepp.com/

on page 16

Key for abbreviations

Design guidelines from page 62

technik@kabelschlepp.de Fechnical support:

online-engineer.de

Pitch 91 mm

Inner height 60 mm

Inner widths 75 - 600 mm

Bending radii 135 - 500 mm

Stay variants

Aluminum stay RSH page 292

Frame screw-in stay

- Aluminum profile bars for light to medium loads. Assembly without screws.
- Outside/inside: release by rotating 90°.

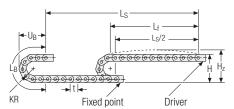
Plastic stay RE page 296

Frame screw-in stay

- Plastic profile bars for light to medium loads.
- Assembly without screws.
- Outside/inside: release by rotating 90°.

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source - with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax



TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

L60 I Installation dim. I Unsupported

Unsupported arrangement

KR	Н	H_z	L_B	U_B
[mm]	[mm]	[mm]	[mm]	[mm]
135	358	408	607	271
150	388	438	654	286
175	441	491	732	312
200	488	538	811	336
250	588	638	968	386
300	688	738	1125	436
350	788	838	1282	486
400	888	938	1439	536
500	1088	1138	1753	636

Inner heights

Inner widths

75 600

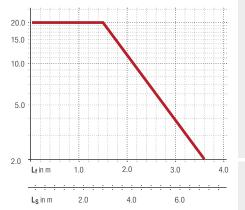
Load diagram for unsupported length depending on the additional load.

Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.

Intrinsic cable carrier weight $q_k = 3.6$ kg/m. For other inner widths, the maximum additional load changes.

Speed up to 6 m/s

Travel length


up to 7 m

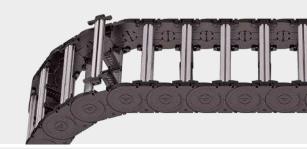
Acceleration up to 30 m/s2

Additional load up to 20 kg/m

tsubaki-kabelschlepp.com/

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support

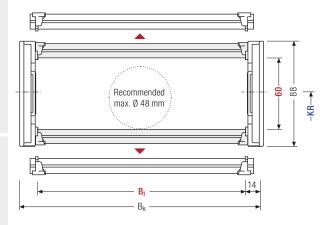

Configure your cable carrier here: online-engineer.de

on page 16

LC60 RSH | Dimensions · Technical data

Plastic stay RSH screw-in frame stay

- Aluminum profile bars for light to medium loads. Assembly without screws.
- Available customized in 1 mm grid.
- Outside/inside: release by rotating.



Stays mounted on each chain link (VS: fully-stayed)

Design guidelines from page 62

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length Lk rounded to pitch t

> [kg/m] 2,78 - 7,10

technik@kabelschlepp.de Technical support:

hi	h _G	Bi	B_k					KR					
[mm]	[mm]	[mm]*	[mm]					[mm]					
60	88	75 – 600	B _i + 28	135	150	175	200	250	300	350	40	00	;
* in 1 mm	width se	ections	•		•	•			••••	•	•••••		

Order example				
LC 6	. RSH Stay variant	250 - [KR [mm]	2184 L _k [mm]	VS Stay arrangement

online-engineer.de

Divider systems

The divider system is mounted on every 2nd chain link as a standard

As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (version A).

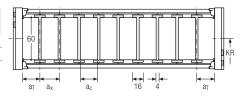
For applications with lateral acceleration and lying on the side, the dividers can be attached by a fixing profile, available as an accessory (version B). The fixing profile must be installed at the factory.

Inner heights

Inner widths

75 600

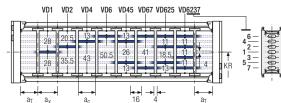
> Increments



:subaki-kabelschlepp.com/

Divider system TS0 without height separation

Vers.	[mm]	[mm]		a _{x grid} [mm]	n _T min
Α	10	13	9	-	-
В	10	13	9	2	-


The dividers can be moved within the cross section (version A) or fixed (version B).

Divider system TS1 with continuous height separation

Vers.				a _{x grid} [mm]	n _T
Α	10	13	9	-	2
В	10	13	9	2	2

The dividers can be moved within the cross section (version A) or fixed (version B).

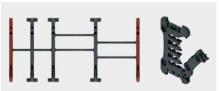
TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at **tsubaki-kabelschlepp.com/totaltrax**

TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at **traxline.de**

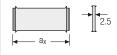
LC60 RSH | Inner distribution |


Divider system TS3 with height separation consisting of plastic partitions

As a standard, the divider version A is used for vertical partitioning within the cable carrier. The complete divider system can be moved within the cross section.

Divider version A

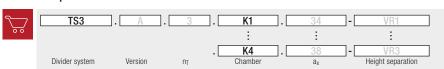
End divider



Vers.	a _{T min}	a _{x min}	a _{c min}	n _T
	[mm]	[mm]	[mm]	min
Α	8/4*	14	10	2

For End divider

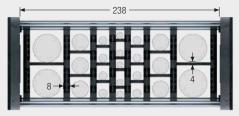
The dividers are fixed by the partitions, the complete divider system is movable in the cross section.


VRO VR1 VR2	VR3 VR4 VR5	VR45 VR145	
28.75 20.75	12.75 36.75 44.75	12,75 12,75	4 2 4
28.75	44.75 20.75 12.75	29.5 13.5 2.5 12.75 12.75	KR 53
$\begin{vmatrix} \mathbf{a} \\ \mathbf{a}_{T} \end{vmatrix} = \begin{vmatrix} \mathbf{a}_{X} \end{vmatrix}$	a _c 12	4 -	a _T End divider

					a _x (ce	enter	dista	nce o	f divi	ders)	[mm]]				
							width									
14	16	19	23	24	28	29	32	33	34	38	39	43	44	48	49	54
10	12	15	19	20	24	25	28	29	30	34	35	39	40	44	45	50
58	59	64	68	69	74	78	79	80	84	88	89	94	96	99	112	
54	55	60	64	65	70	74	75	76	80	84	85	90	92	95	108	

An additional central support is required when using plastic partitions with $a_x > 49 \text{ mm}$.

Order example

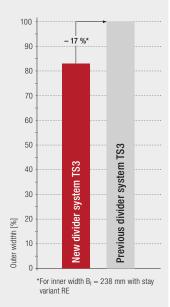

Please state the designation of the divider system (TS0, TS1,...), version and number of dividers per cross section [n_T]. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances [a_T/a_x] (as seen from the driver).

If using divider systems with height separation (TS1, TS3) please also state the positions [e.g. VD23] viewed from the left driver belt. You are welcome to add a sketch to your order.

The next generation of the TS3 divider system

Width optimized for more space in the same cable carrier

Width comparison



Previous divider system TS3 with stay variant RE

Significatn space saving with same filling capacity through the new divider system TS3 with stay variant RE

Width optimization through adapted dividers

Inner heights

Inner widths

Increments 1 mm

tsubaki-kabelschlepp.com/

Easy-to-assemble cable separation on the smallest footprint

Insert cables, open dividers and insert first height separator

Insert additional cables, insert height separators

Insert cables, complete height separators

Close dividers

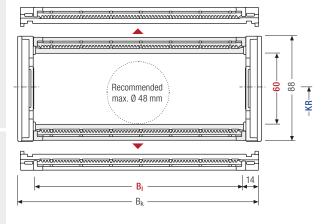
on page 16

LE60 RE | Dimensions · Technical data

Plastic stay RE -

frame screw-in stay

- Plastic profile bars for light to
- medium loads. Assembly without screws. ■ Outside/inside: release by rotating.


Stays mounted on each chain link (VS: fully-stayed)

 $B_i 85 - 250 \text{ mm}$

Design guidelines from page 62

technik@kabelschlepp.de Technical support:

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length Lk rounded to pitch t

online-engineer.de
8

h _i [mm]	h _G B _i [mm]				B _k [mm]	B _k KR [mm]				q_k [kg/m]			
60	00	85	125	138	150	D 00	135	150	175	200	250	2.00 4.00	
60	88	180	196	225	250	D _i + 20	300	350	400	500		3.00 – 4.20	

Order example

LE 60].	180	
Туре		B _i [mm]	Sta

RE].	
Stay variant		

250	-	2184
KR [mm]		L _k [mm]

V	S
Stay arra	ngement

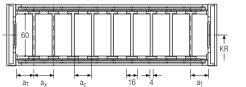
LE60 RE | Inner distribution | TS0 · TS1

Divider systems

The divider system is mounted on every 2nd chain link

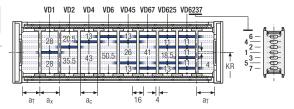
As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (version A).

heights


Inner widths

Divider system TS0 without height separation

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}	
Δ	10	13	a	_	-


The dividers can be moved within the cross section.

Divider system TS1 with continuous height separation

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	10	13	9	2

The dividers can be moved within the cross section.

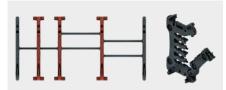
TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax

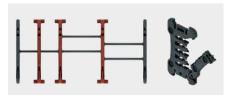
TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

:subaki-kabelschlepp.com/

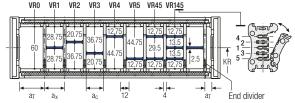

As a standard, the divider version A is used for vertical partitioning within the cable carrier. The complete divider system can be moved within the cross section.

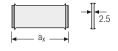
Key for abbreviations on page 16


Design guidelines from page 62

technik@kabelschlepp.de Technical support:

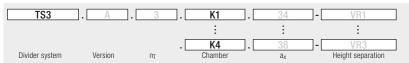
Divider version A




End divider

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _T					
Α	8/4*	14	10	2					
* For End	* For End divider								

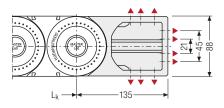
The dividers are fixed by the partitions, the complete divider system is movable in the cross section.

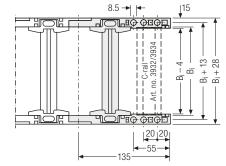

	a _x (center distance of dividers) [mm]															
	a _c (nominal width of inner chamber) [mm]															
14	16	19	23	24	28	29	32	33	34	38	39	43	44	48	49	54
10	12	15	19	20	24	25	28	29	30	34	35	39	40	44	45	50
58	59	64	68	69	74	78	79	80	84	88	89	94	96	99	112	
54	55	60	64	65	70	74	75	76	80	84	85	90	92	95	108	

(a contain alternation of alternations) formal

An additional central support is required when using plastic partitions with $a_X > 49 \text{ mm}$.

Order example





Please state the designation of the divider system (TS0, TS1,...), version and number of dividers per cross section [n_T]. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances [a_T/a_x] (as seen from the driver).

If using divider systems with height separation (TS1, TS3) please also state the positions [e.g. VD23] viewed from the left driver belt. You are welcome to add a sketch to your order.

The universal mounting brackets (UMB) are made from plastic and can be mounted from the top, from the bottom or face on.

▲ Assembly options

Connection point

F - fixed point M - driver

Connection type

U - universal mounting bracket

Order example

FII

We recommend the use of strain reliefs before driver and fixed point. See from p. 794.

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support

Configure your cable carrier here: onlineengineer.de

tsubaki-kabelschlepp.com/

Key for abbreviations on page 16

Design guidelines from page 62

technik@kabelschlepp.de Fechnical support:

online-engineer.de

Pitch 111 mm

Inner height 80 mm

Inner widths 85 - 800 mm

Bending radii 150 - 500 mm

Stay variants

Aluminum stay RSH page 302

Frame screw-in stay

Aluminum profile bars for light to medium loads.

Assembly without screws.

Outside/inside: release by rotating 90°.

Plastic stay RE.....page 306

Frame screw-in stay

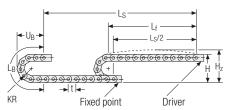
Plastic profile bars for light to medium loads.

Assembly without screws.

Outside/inside: release by rotating 90°.

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax



TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

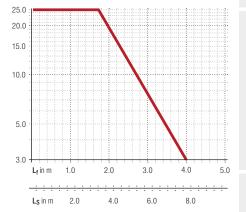
L80 I Installation dim. I Unsupported

Unsupported arrangement

KR [mm]	H [mm]	H _z [mm]	L _B [mm]	U _B [mm]
150	410	470	694	316
200	510	570	851	366
250	610	670	1008	416
300	710	770	1165	466
350	810	870	1322	516
400	910	970	1479	566
500	1110	1170	1793	666

Inner heights

Inner widths


tsubaki-kabelschlepp.com/

Load diagram for unsupported length depending on the additional load.

Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific

Intrinsic cable carrier weight $q_k = 5.63$ kg/m. For other inner widths, the maximum additional load changes.

up to 5 m/s

Speed

Travel length up to 7.9 m

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support

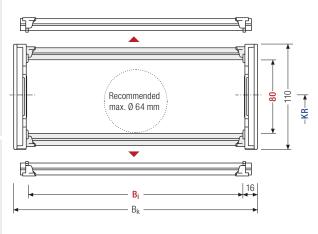

Configure your cable carrier here: online-engineer.de

on page 16

LC80 RSH | Dimensions · Technical data

Plastic stay RSH -

- screw-in frame stay
- Aluminum profile bars for light to medium loads. Assembly without screws.
- Available customized in 1 mm grid.
- Outside/inside: release by rotating.


Stays mounted on each chain link (VS: fully-stayed)

Design guidelines from page 62

technik@kabelschlepp.de

Technical support:

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length Lk rounded to pitch t

h _i	h _G	B _i	B _k	KR	q_k
[mm]	[mm]	[mm]*	[mm]	[mm]	[kg/m
	110	*		150 200 250 300 350 400 500	

in 1 mm width sections

Order example					
LC 80 Type	. 500 B _i [mm]	RSH . Stay variant	300 - KR [mm]	2442 L _k [mm]	VS Stay arrangement

0.01

online-engineer.de

LC80 RSH | Inner distribution | TS0 · TS1

Divider systems

The divider system is mounted on every 2nd chain link as a standard

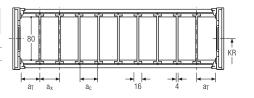
As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (version A).

For applications with lateral acceleration and lying on the side, the dividers can be attached by a fixing profile, available as an accessory (version B). The fixing profile must be installed at the factory.

Inner heights

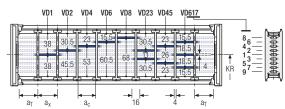
Inner widths

100 800


Increments

Divider system TS0 without height separation

Vers.	[mm]	[mm]		a _{x grid} [mm]	n _T min
Α	10	16	12	-	-
В	10	16	12	3	_


The dividers can be moved within the cross section (version A) or fixed (version B).

Divider system TS1 with continuous height separation

Vers.				a _{x grid} [mm]	n _T
Α	10	16	12	-	2
В	10	16	12	3	2

The dividers can be moved within the cross section (version A) or fixed (version B).

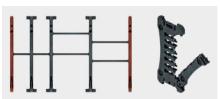
TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at **tsubaki-kabelschlepp.com/totaltrax**

TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at **traxline.de**

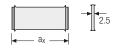
LC80 RSH | Inner distribution |


Divider system TS3 with height separation consisting of plastic partitions

As a standard, the divider version A is used for vertical partitioning within the cable carrier. The complete divider system can be moved within the cross section.

Divider version A

End divider



Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _T
Α	8/4*	14	10	2
+	Late data a	•		

For End divider

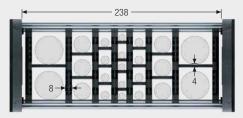
The dividers are fixed by the partitions, the complete divider system is movable in the cross section.

١	/RO VI	R1 VF	R2 VR4	VR6	VR45	VR47	VR6 <u>25</u>			
(F) =	+ ;							≕चता		
	492	92	92	11175	92	P 97	475	-14 11		
118	38	.75 30.	75 22.7	"──	22.75	22./5	13 5	# 811	46-12-18	
· - #. ;	80		$\dashv \sqcap$		29.5		14.5		_ 12-	
	ĭ	75 46	75 54.75	62,75	20.0	37.5	21.5	2.5	1 5 ³⁻	
II A	1 30	,/3			22,75	14.75	22.75		KR 7-0-10	
	- 45	<u> </u>	45	<u>ть .</u>	4P • 4	15 ° 45	• 45		ا هجای	
	مأح	j			ــا ا	الد	_	عا لد		
7 8	at a	lχ	ac	1 -	12	4		aT	End divider	
		^								

	a _x (center distance of dividers) [mm]															
	a _c (nominal width of inner chamber) [mm]															
14	16	19	23	24	28	29	32	33	34	38	39	43	44	48	49	54
10	12	15	19	20	24	25	28	29	30	34	35	39	40	44	45	50
58	59	64	68	69	74	78	79	80	84	88	89	94	96	99	112	
54	55	60	64	65	70	74	75	76	80	84	85	90	92	95	108	

An additional central support is required when using plastic partitions with $a_x > 49 \text{ mm}$.

Order example

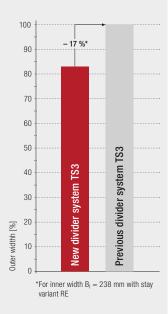

Please state the designation of the divider system (TS0, TS1,...), version and number of dividers per cross section [n_T]. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances [a_T/a_x] (as seen from the driver).

If using divider systems with height separation (TS1, TS3) please also state the positions [e.g. VD23] viewed from the left driver belt. You are welcome to add a sketch to your order.

The next generation of the TS3 divider system

Width optimized for more space in the same cable carrier

Width comparison



Previous divider system TS3 with stay variant RE

Significatn space saving with same filling capacity through the new divider system TS3 with stay variant RE

Width optimization through adapted dividers

Inner

Inner widths

Increments 1 mm

tsubaki-kabelschlepp.com/

Easy-to-assemble cable separation on the smallest footprint

Insert cables, open dividers and insert first height separator

Insert additional cables, insert height separators

Insert cables, complete height separators

Close dividers

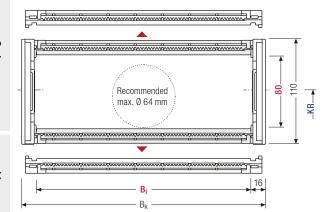
on page 16

LE80 RE | Dimensions · Technical data

Plastic stay RE -

frame screw-in stay

- Plastic profile bars for light to medium loads. Assembly without screws.
- Outside/inside: release by rotating.



Stays mounted on each chain link (VS: fully-stayed)

 $B_i 85 - 250 \text{ mm}$

Design guidelines from page 62

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length Lk rounded to pitch t

technik@kabelschlepp.de Technical support:

engineer.de
Online-6

h _i [mm]	h _G [mm]	B _i [mm]				B _k [mm]	KR [mm]			q_k [kg/m]
00	110	85	125	138	150	D 20	150	200	300	204 402
80	110	180	196	225	250	Dj + 32	350	400	500	3.04 – 4.03

Order example

LE 80	250	
Туре	B _i [mm]	

RE	30
Stay variant	KR [n

300	-	2442
KR [mm]		L _k [mm]

VS	1
Stay arrangement	

The divider system is mounted on every 2nd chain link as a standard.

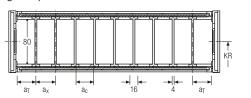
LE80 RE | Inner distribution | TS0 · TS1

As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (version A).

For applications with lateral acceleration and lying on the side, divider with arresting cams are available. These can be fixed in the latching profile of the stays (version B).

Inner heights

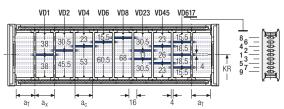
Inner widths



tsubaki-kabelschlepp.com/

Divider system TS0 without height separation

Vers.				a _{x grid} [mm]	n _T min
Α	10	16	12	-	-
В	10	16	12	2.5	_


The dividers can be moved within the cross section (version A) or fixed (version B).

Divider system TS1 with continuous height separation

Vers.				a _{x grid} [mm]	n _T min
Α	10	16	12	-	2
В	10	16	12	2.5	2

The dividers can be moved within the cross section (version A) or fixed (version B).

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax

TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

LE80 RE | Inner distribution

Divider system TS3 with height separation consisting of plastic partitions

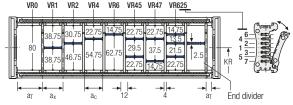
As a standard, the divider version A is used for vertical partitioning within the cable carrier. The complete divider system can be moved within the cross section.

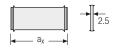
Key for abbreviations on page 16

Design guidelines from page 62

technik@kabelschlepp.de Technical support:

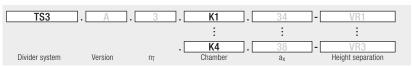
Divider version A




End divider

	Vers.	a _{T min}	a _{x min}	a _{c min}	n _T				
		[mm]	[mm]	[mm]	min				
	Α	8/4*	14	10	2				
* For End divider									

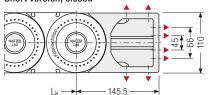
The dividers are fixed by the partitions, the complete divider system is movable in the cross section.

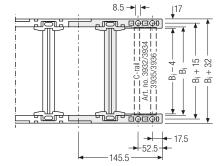

ax (center distance of dividers) [min]														
$a_{\mathbb{C}}$ (nominal width of inner chamber) [mm]														
14 16 19	23	24	28	29	32	33	34	38	39	43	44	48	49	54
10 12 15	19	20	24	25	28	29	30	34	35	39	40	44	45	50
58 59 64	68	69	74	78	79	80	84	88	89	94	96	99	112	
54 55 60	64	65	70	74	75	76	80	84	85	90	92	95	108	

a., (center distance of dividers) [mm]

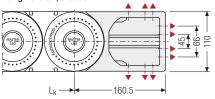
An additional central support is required when using plastic partitions with $a_X > 49 \text{ mm}$.

Order example

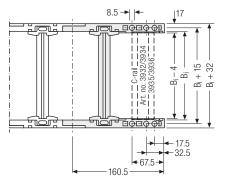

Please state the designation of the divider system (TS0, TS1,...), version and number of dividers per cross section [n_T]. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances [a_T/a_x] (as seen from the driver).


If using divider systems with height separation (TS1, TS3) please also state the positions [e.g. VD23] viewed from the left driver belt. You are welcome to add a sketch to your order.

Universal end connectors UMB - plastic (standard)


The universal mounting brackets (UMB) are made from plastic and can be mounted from the top, from the bottom or face on.

Short version, closed



Long version, closed

Assembly options

(o (o (o (o (o (o - Driver Fixed point FU

Connection point

F - fixed point M - driver

Connection type

U - universal mounting bracket

Order example

We recommend the use of strain reliefs before driver and fixed point. See from p. 794.

Inner widths

tsubaki-kabelschlepp.com/